Exploiting sparsity for the min k-partition problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Logical s-t Min-Cut Problem: An Extension to the Classic s-t Min-Cut Problem

Let $G$ be a weighted digraph, $s$ and $t$ be two vertices of $G$, and $t$ is reachable from $s$. The logical $s$-$t$ min-cut (LSTMC) problem states how $t$ can be made unreachable from $s$ by removal of some edges of $G$ where (a) the sum of weights of the removed edges is minimum and (b) all outgoing edges of any vertex of $G$ cannot be removed together. If we ignore the second constraint, ca...

متن کامل

Approximation Algorithms for Min-Max Tree Partition

We consider the problem of partitioning the node set of a graph into p equal sized subsets. The objective is to minimize the maximum length, over these subsets, of a minimum spanning tree. We show that no polynomial algorithm with bounded Ž 2 . error ratio can be given for the problem unless P s NP. We present an O n time algorithm for the problem, where n is the number of nodes in the graph. A...

متن کامل

Exploiting Matrix Sparsity for Symbolic Analysis

This paper deals with a method for symbolic approximation that exploits the sparsity of circuit matrix to achieve an acceptable speed for large circuits. The method is based on a simplification of the equations of circuit models of linear or linearized circuits in the frequency domain. The simplified model is then analyzed symbolically. The algorithm proposed has been developed with the aim of ...

متن کامل

Exploiting sparsity in pricing routines for the capacitated arc routing problem

The Capacitated Arc Routing Problem (CARP) is a well-known and fundamental vehicle routing problem. A promising exact solution approach to the CARP is to model it as a set covering problem and solve it via branch-cut-and-price. The bottleneck in this approach is the pricing (column generation) routine. In this paper, we note that most CARP instances arising in practical applications are defined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming Computation

سال: 2019

ISSN: 1867-2949,1867-2957

DOI: 10.1007/s12532-019-00165-3